P/Q-Type Ca Channel 1A Regulates Synaptic Competition on Developing Cerebellar Purkinje Cells
نویسندگان
چکیده
Synapse formation depends critically on the competition among inputs of multiple sources to individual neurons. Cerebellar Purkinje cells have highly organized synaptic wiring from two distinct sources of excitatory afferents. Single climbing fibers innervate proximal dendrites of Purkinje cells, whereas numerous parallel fibers converge on their distal dendrites. Here, we demonstrate that the P/Q-type Ca 2ϩ channel ␣1A, a major Ca 2ϩ channel subtype in Purkinje cells, is crucial for this organized synapse formation. In the ␣1A knockout mouse, many ectopic spines were protruded from proximal dendrites and somata of Purkinje cells. Innervation territory of parallel fibers was expanded proximally to innervate the ectopic spines, whereas that of climbing fibers was regressed to the basal portion of proximal dendrites and somata. Furthermore, multiple climbing fibers consisting of a strong climbing fiber and one or a few weaker climbing fibers, persisted in the majority of Purkinje cells and were cowired to the same somata, proximal dendrites, or both. Therefore, the lack of ␣1A results in the persistence of parallel fibers and surplus climbing fibers, which should normally be expelled from the compartment innervated by the main climbing fiber. These results suggest that a P/Q-type Ca 2ϩ channel ␣1A fuels heterosynaptic competition between climbing fibers and parallel fibers and also fuels homosynaptic competition among multiple climbing fibers. This molecular function facilitates the distal extension of climbing fiber innervation along the dendritic tree of the Purkinje cell and also establishes climbing fiber monoinnervation of individual Purkinje cells.
منابع مشابه
Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)).
Recent genetic analyses have revealed an important association of the gene encoding the P/Q-type voltage-dependent Ca(2+) channel alpha(1A) subunit with hereditary neurological disorders. We have identified the ataxic mouse mutation, rolling Nagoya (tg(rol)), in the alpha(1A) gene that leads to a charge-neutralizing arginine-to-glycine substitution at position 1262 in the voltage sensor-forming...
متن کاملL-Type calcium channels mediate calcium oscillations in early postnatal Purkinje neurons.
Ca(2+) signaling is important in many fundamental neuronal processes including neurotransmission, synaptic plasticity, neuronal development, and gene expression. In cerebellar Purkinje neurons, Ca(2+) signaling has been studied primarily in the dendritic region where increases in local Ca(2+) have been shown to occur with both synaptic events and spontaneous electrical activity involving P-type...
متن کاملCalcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons.
Cerebellar Purkinje neurons fire spontaneously in the absence of synaptic transmission. P/Q-type voltage-gated calcium channels and calcium-activated potassium channels are required for normal spontaneous activity. Blocking P/Q-type calcium channels paradoxically mimics the effects of blocking calcium-activated potassium channels. Thus, an important function of the P/Q-type calcium channels is ...
متن کاملPostnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice.
Ataxia, episodic dyskinesia, and thalamocortical seizures are associated with an inherited loss of P/Q-type voltage-gated Ca(2+) channel function. P/Q-type channels are widely expressed throughout the neuraxis, obscuring identification of the critical networks underlying these complex neurological disorders. We showed recently that the conditional postnatal loss of P/Q-type channels in cerebell...
متن کاملDirect alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6.
Spinocerebellar ataxia 6 (SCA6) is caused by expansion of a polyglutamine stretch, encoded by a CAG trinucleotide repeat, in the human P/Q-type Ca(2+) channel alpha(1A) subunit. Although SCA6 shares common features with other neurodegenerative glutamine repeat disorders, the polyglutamine repeats in SCA6 are exceptionally small, ranging from 21 to 33. Because this size is too small to form inso...
متن کامل